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LIST OF SYMBOLS

A s state vector array
A subvector of state vector A at interface P
AL AgAg s pressure amplitudes (see Fig. 4.2)
Ay o, vector composed of input state vector coefficients [Eq. (4.2)]
At woeveeeneverennnnnens vector composed of output state vector coefficients [Eq. (4.2)]
A,-ﬁ ........................ subvector of state vector 4;,
Afu, ....................... subvector of state vector A,
Av‘; ........................ subvector of state vector A for wave type W at interface P
Av'}s,m ..................... state vector element (sometimes P or W may be omitted but implied)
Aoy eeeerernmveeeseeneessenee far-field speed of sound (used for normalization)
B oo number of rotor blades
B oot source vector array
BY o subvector of source vector B at interface P
BeoMB ---eeeeeeeieeenes combined stator/actuator disk source vector
Bé; ........................ subvector of source vector BY for wave of type W at interface P
4 o R source vector element (sometimes P or W may be omitted but implied)
B vane semi-chord
DR oo rotor semi-chord
Dr e vane semi-chord at the tip
B oo b/2br
Cowsin (T) e function used in specifying pressure modal amplitudes
€ ererreereeenirennreans speed of sound
CasCh wereenemnmnnerennnss medium nominal speed of sound in region a or b
CQ veenvessreminennnnnans medium nominal speed of sound
Dy (7,2) e see Eq. (A.25)
E . matrix used in obtaining Scopp and Bcoyms
Eg,s,m ..................... axial location shift factor [Eq. (3.25)]
Fv{;’g}i skmskon; ++eeeeeeeees axial location shift factor (for input and output wave locations) [Eq. (3.26)]
JeW, sim, weeneeeneenneeanen: kth Fourier harmonic of elemental blade loading function for stator

produced by (s;,k,n;) - mode input wave
Lo e sth Fourier harmonic of elemental blade loading function for stator



FiW km,  ceeveeemremnnnene sth Fourier harmonic of elemental blade loading function for stator
produced by (s,k;,n;) - mode input wave

Gx,y,t=T) ceveeeenee Green’s function

Bln woreereerneesnneennes normalization parameter [Eq. (C.28)]

- YRR normalization parameter [Eq. (C.45)]

B vane or blade spacing

R V-1

T () s mth order Bessel function of the first kind

K oo reduced frequency for stator or rotor

Ky matrix associated with input waves, used in calculating actuator disk
scattering matrix

K,=K,.K, ... actuator disk scattering matrix

KioWW,sknisn, -e-eeeene element of matrix K,

Koyt oo matrix associated with output waves, used in calculating actuator disk
scattering matrix

K () oo cascade kemel function for stator or rotor

EE e vane passing frequency harmonic index (k is output or generic value, k; is
input value)

L —— chordwise gust wavenumber for rotor produced by (s;,k,n;)- mode input
wave

Ky -ooveeeeseesnneneenns see p. 38

ks ceeereereeeeeeeeenens see Eq. (A.10)

kg s chordwise gust wavenumber for stator

| S (()) RO see Eq. (A.4)

75 THENRERR——— chordwise gust wavenumber for stator produced by (s,k;,n;) - mode input
wave

k.rkn ......................... k sk’ D

Lo, number of duct sub-annuli

M o duct axial flow Mach number

Mp i Mach number for rotor relative flow

My i Mach number for stator relative flow

Mg e duct axial flow Mach number in stator region

Mp s swirl rotational Mach number at the rotor tip at interface P

Mpr o rotor blade tip rotational Mach number

m=sB-kV ... circumferential wavenumber of acoustic duct mode

Np i number of radial modes for wave type W =1

Ny e number of radial modes for wave type W =2

Ny o, number of radial modes for wave type W =3



78 TSRO duct radial mode index ( is output or generic value, n; is input value)

Rooeeeeeeeeecaennnes unit outward normal to vane or blade surface

7 H U OO unit outward normal to vane or blade mean surface (see Fig. 2.3)

I oo identity matrix

) 2 = R index specifying an interface location or a region, see Figs. 1.1, 31 (P i
output or generic value, P; is input value)

D ceereeeeneniinaeeneninenes acoustic pressure

Pg ceveeneesseeneernenesnnenes mean pressure in region a

DWekn --eevesesesesesneses duct mode complex harmonic pressure amplitude for wave of type W

p{{; .......................... acoustic pressure for wave of type W at interface P

Doo weveeemersssmmessessneans far-field pressure (used for normalization)

DasDp covveeereesesnensnnens disturbance pressure in region a or b (Appendix C)

PSR radial coordinate

TP covemeereresninsnennenenns duct outer radius

T coveveermssensnssnansnenes duct inner radius

£ TR radial coordinate value at /th radial station

S e scattering matrix

SCOMB --+-vevresveeeenes combined stator/actuator disk or rotor/actuator disk scattering matrix

Ry Y O vane or blade mean surface

S%‘ifi ....................... submatrix of scattering matrix S for input wave of type W, at interface F;
and output wave of type W at interface P

S,{;ﬁ,i e scattering matrix element (sometimes P or W may be omitted but implied)

SOP) oo vane or blade surface (both upper and lower)

§,8; vreeercerecisrenarerenns blade passing frequency (BPF) harmonic index (s is output or generic
value, s; is input value)

R time variable

U e, axial component of mean flow

U=U,V,0) .......... mean velocity

U Up e axial component of mean velocity in region a or b

U Us oo axial component of mean velocity in rotor and stator regions

U,sUps cvrneeineeenene fluid velocity relative to rotor or stator

U ,f (F) e vorticity wave radial duct mode (sometimes P may be omitted but implied)

U oeeeeeeeeeeeieenneennens disturbance velocity

U oeeeeceaneeenreeeneesennnes axial component of disturbance velocity

u% .......................... axial component of disturbance velocity for wave of type W at interface P

u,?},_,,m ...................... duct mode complex harmonic axial velocity amplitude for wave of type W
at interface P

Ug,Upy <oeeneneereenasnenens axial component of disturbance velocity in region a or b (Appendix C)



an =KpnID cveeeereres

function given by S. N. Smith
see Eq. (B.3)

number of vanes, or when used in a velocity context, the transverse
component of mean flow
transverse component of mean velocity in region a or b

transverse component of disturbance velocity

transverse component of disturbance velocity for wave of type W at
interface P

duct mode complex harmonic transverse velocity amplitude for wave of

type W at interface P
transverse component of disturbance velocity in region a or b (Appendix

©

index specifying wave type, W or W; = 1: upstream pressure, = 2:
downstream pressure, = 3: downstream vorticity (W is output or generic
value, W; is input value)

wake velocity downstream of rotor (Fig. 2.1)
Fourier coefficient of W

stator or rotor upwash

Fourier coefficient of w for stator

sth harmonic of upwash

Fourier coefficient of w for rotor produced by (s;,k,n;)-mode input
wave for input wave of type W;

Fourier coefficient of w for stator produced by (s,%;,n; )-mode input wave
for input wave of type W;

see Egs. (3.11) and (3.12)

see Egs. (3.18) and (3.19)

duct radial eigenvalue (non-dimensional)
Cartesian coordinate system for rotor/stator system. Origin may vary for

different situations (Fig. 2.1)

axial coordinate (Appendix B, S. N. Smith notation), x =r/rp (Section
3.2 only)

axial displacement of blade leading edge

Xsp / 2bT

axial displacement of vane leading edge

xspac / 2br

blade trailing edge to vane leading edge axial distance

blade trailing edge to vane leading edge axial distance at the hub

axial interface locations (Figs. 1.1, 3.1, D.1,D.2)



X7 eereeeeeeeeee s axial location where rotor leading edge intersects the hub

XS e axial location where stator leading edge intersects the hub

T=(10,%) oo cylindrical polar coordinate system attached to stator leading edge at each
radius (Fig. B.3)

Y, () e mth order Bessel function of the second kind

Y= 00 Y) e field point in Green’s function

Y eeereccesinennae s transverse coordinate (Appendix B, S. N. Smith notation)

YRD -eoveeeeninerereenenens azimuthal displacement of blade trailing edge

YRLED -w-veeveeeevesseesees azimuthal displacement of blade leading edge

VS cereeerrcrsieeinnereennas ysp / 2br

VSD  ceeveeernereesnnesenanes azimuthal displacement of vane leading edge

T cerereeceeeeeeiennnaneas chordwise coordinate along the vane or blade

2 ceeeeereeeesemenrreenenanns vane chord coordinate (Appendix B, S. N. Smith notation)

2 e observer chordwise coordinate along the vane or blade

O .o Zero matrix

OUCL coovveevmnmsreresnnnens blade relative velocity flow angle

o Mo 0 G blade relative velocity flow angle at the hub

LR coverrremeererssnnannaneas negative of blade stagger angle

0§ cevererrermerrenennnnanns vane stagger angle

(0 R axial wavenumber (Appendix B, S. N. Smith notation)

B o \fl -M ,2 . Also, transverse wavenumber (Appendix B only, S. N. Smith
notation)

B, s ﬁ -M 35 or J 1-M ,2R , respectively, for stator or rotor

) parameter used in specifying K, (). Also, T = n(rj —rf) (Appendix A)

T(Zg) -oeererrrennennnene vortex strength (Appendix B, S. N. Smith notation)

Y (@) oo see Eq. (A.3)

Y ok eeeeeeereeresneenencs see p. 38

Y srs  eeveeeevesreeessnseens see Eq. (A.9)

Y i e axial wavenumber of duct mode (sometimes P or W may be omitted but
implied)

0 Y sin™D

AD unsteady loading on vanes or blades

ADp e kth Fourier coefficient of unsteady loading on blades

AP e, sth Fourier coefficient of unsteady loading on vanes

AT e radial increment (see Fig. B.1)

AT e, (r; =, ), radial increment at radial station ! (see Fig. B.1)

() e Dirac delta function



) ,,,, ....................... Kronecker delta

Oty coevereerermreeserenas see Eq. (C.33)

S see Eq. (C.50)

Osnp ereremmeemeenn. see Eq. (C.51)

Ve gradient operator

Vs gradient operator evaluated with respect to field point coordinates y

0 e stagger angle (Appendix B, S. N. Smith notation)

Ky oevereveecnmncecsaneenes duct mode radial eigenvalue (dimensional)

Ak wevernereneraerinnens see Eq. (C.9)

Nisn ceoeeereneeereenennns AMgekn / €p» Where P indicates axial interface or region

Vo e eecee e vane or blade index

[0 30 o 1 O mean fluid density

ParPh coeererrrveriesnenns mean fluid density in region a or b

PRIPS corereeereceerneenne mean fluid density in rotor or stator region

Lo SN inter-blade phase angle

O5 coevmeeermmmcenneneeans inter-vane phase angle

O S ceeeerereemeemreesneonns 2by I mp

Lo 2R rglrp

T oreeeeccceereeereeennarees time variable

O e, polar angle coordinate

0,07 oo, polar angle coordinate for field and source points, respectively, in inertial
reference coordinate system '

O e polar angle coordinate for source point in stator-fixed coordinate system

q?' ........................... polar angle coordinate for source point in rotor-fixed coordinate system

| ,I:m(r) ................... duct acoustic wave radial mode (sometimes P or W may be omitted but
implied)

Q=(Q; -Q,) ... actual rotor rotational speed

Qe swirl flow rotational speed

LR § 70 S swirl flow rotational speed in region a or b

Q] e rotor rotational speed with respect to inertial coordinate system (Fig. 2.3)

€ e stator rotational speed with respect to inertial coordinate system (Fig. 2.3)

O et radian frequency
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SUMMARY

This report provides the analytical documentation for the SOURCE3D Rotor Wake/Stator
Interaction Code. It derives the equations for the rotor scattering coefficients and stator source
vector and scattering coefficients that are needed for use in the TFaNS (Theoretical Fan Noise
Design/Prediction System). Source vector coefficients are the coefficients for stator scattering of
rotor wakes into acoustic and vortical waves. Scattering coefficients are the reflection and
transmission coefficients for the rotor and stator for inputs of unit amplitude acoustic or vorticity
waves. SOURCE3D treats the rotor and stator as isolated source elements. TFaNS uses this
information, along with scattering coefficients for inlet and exit elements, and provides complete
noise solutions for turbofan engines.

In the past, three-dimensional source codes, generally, have only treated noise produced
by the rotor wake interacting with the stator. Reflection and transmission from the rotor has been
ignored. Also, vorticity waves and the effect of swirl have been omitted. These items are needed
to account for frequency scattering and mode trapping. Frequency scattering is the phenomenon
where the rotor scatters an input wave at blade passing frequency (BPF) into other harmonics.
Mode trapping is the mechanism whereby the BPF mode reflects back and forth between the rotor
and stator, then finally scatters into higher harmonics, and exits.

SOURCES3D is composed of a collection of FORTRAN programs that have been obtained
by extending the approach of the earlier V072 Rotor Wake/Stator Interaction Code. Similar to
V072, it treats the rotor and stator as a collection of blades and vanes having zero thickness and
camber contained in an infinite hard-walled annular duct. Acoustic and vorticity waves are
calculated by distributing pressure dipoles on the blades and vanes. Then acoustic wave
amplitudes are calculated at arbitrary points within the duct using the normal mode expansion of
the Green’s function for an annular duct; vorticity wave amplitudes are calculated via a strip
application of S. N. Smith’s cascade theory.

SOURCE3D adds important features to the V072 capability — a rotor element, swirl flow
and vorticity waves, actuator disks for flow turning, and combined rotor/actuator disk and
stator/actuator disk elements. These items allow reflections from the rotor, frequency scattering,
and mode trapping, thus providing more complete noise predictions than previously. The code
has been thoroughly verified through comparison with D. B. Hanson’s CUP2D two-dimensional
coupled cascade noise prediction code using a narrow annulus test case. For this case, which
provides a two-dimensional situation, our results were essentially identical.



CHAPTER 1

INTRODUCTION

In turbofan noise prediction programs such as the V072 Rotor Wake/Stator Interaction
Code (Ref. 1), rotor wakes impinge on the stator producing unsteady vane loads that cause noise.
Generally in these codes, reflections from other fan elements are ignored. However, reflections
from the inlet, exit, and rotor could affect source strength. Experimental studies by Topol,
Holhubner, and Mathews (Ref. 2) have shown this to be the case. Also, Hanson has
demonstrated this analytically using his coupled cascade theory (Ref. 3) and Meyer (Ref. 4) has
shown that inlet reflections coupled with the stator can have an impact on source noise levels. It
was shown in Ref. 3 that such such reflections are necessary for accurate noise predictions; also
that a swirl component of mean flow and vorticity waves must be included. These additions to
the acoustic models account for mode trapping and frequency scattering which contribute to
improved correlation with empirical results. Mode trapping is the phenomenon, described by
Hanson (Ref. 3), where a mode at blade passing frequency (BPF) reflects back and forth between
the rotor and stator, but is cut off in the inlet and exit. Scattering, i.e. frequency scattering, of this
mode by the rotor produces higher harmonic modes which then escape through through the inlet
or exit. The presence of swirl between the rotor and stator provides a speed range where mode
trapping occurs.

The TFaNS (Theoretical Fan Noise Design/Prediction System, Ref. 5), developed by Pratt
& Whitney under contract to NASA Lewis, seeks to overcome the shortcomings of earlier noise
prediction systems by including unsteady coupling between four acoustic elements — inlet, rotor,
stator, exit — shown in Fig. 1.1. It extends the two-dimensional approach developed by Hanson in
Ref. 3, coupling the fan elements via the duct eigenmodes.

In TFaNS, the acoustic elements are coupled at the three interface planes shown i
Fig. 1.1. The axial coordinate is x; and the axial locations of the interface planes are at X, x
At these planes, state vector A with elements A”, A%, and A’, and source vector B with elements
B’, B?, and B’, are defined. The state vector elements A’, A®, and A’ give the pressure modal
amplitudes for acoustic waves and velocity modal amplitudes for vorticity waves. The source
vector elements BY, B?, and B’ give the pressure modal amplitudes for the acoustic waves
generated by the rotor wake impinging on the stator. These elements also give the velocity modal
amplitudes for the vorticity waves generated by this wake. State vectors and source vectors will
be described later, in more detail, in Section 2.2.

The action, in TFaNS, of the rotor wake impinging on the stator to create waves that pass
back and forth between the various elements to produce the final noise, is described by the system
of equations

A=SA+B, (1.1)



J
|
3
x} x2 x3 AXIAL COORDINATES

1 2 INTERFACES PLANES
Al A2 A3 STATE VECTOR ELEMENTS
B1 B2 B3 SOURCE VECTOR ELEMENTS

FIGURE 1.1 ACOUSTIC ELEMENTS FOR A TURBOFAN ENGINE



where S is a scattering matrix made up of modal reflection and transmission coefficients at the
various interfaces. The scattering coefficients will be described in more detail later. Solving this
equation gives the state vector

A=(I-5"B, (1.2)
which can then be used to calculate sound power levels and other desired acoustic information.

At the heart of the TFaNS system is the SOURCE3D Rotor Wake/Stator Interaction
Code which calculates the matrix S and vector B needed for the equations above by treating the

stator and rotor source elements each in isolation. The purpose of this report is to document the
approach used by SOURCE3D in attaining this goal.

SOURCE3D was developed at Hamilton Standard; it is coded in FORTRAN 77 and was
designed for UNIX™ workstations. It uses the basic framework provided by V072 and retains
much of that code. The basic physical and geometric assumptions for SOURCE3D are the same
as those for V072. In particular, SOURCE3D treats unsteady, subsonic, isentropic flow i an
annular, infinite duct. There is a background of uniform mean flow in each of the element
regions. The stator vanes and rotor blades are treated as flat plates with negligible camber and
thickness. Ref. 1 provides further details regarding basic assumptions.

SOURCESD is significantly different from V072 in that it treats both the stator and the
rotor, rather than just the stator. Also, it calculates source vector coefficients and scattering
coefficients, rather than the pressure modal amplitudes computed by V072. Additionally, solid
body swirl has been added to the mean flow between the rotor and stator, along with actuator
disks to implement the flow turning accompanying the swirl. These disks turn the flow at the
upstream edge of the rotor and straighten it at the furthest trailing point of the stator. Only
acoustic waves were included in V072. SOURCE3D adds vorticity waves and the source vector
coefficients and scattering coefficients associated with these. Rather than treat the stator and its
actuator disk as separate acoustical elements, SOURCE3D first treats these individually, then
combines them into a single element. The same is true for the rotor and its actuator disk.
Acoustic wave source vector coefficients and scattering coefficients are computed in much the
same way that V072 (Ref. 1) determines modal pressure amplides. It calculates vorticity wave
type source vector coefficients and scattering coefficients much the same as modal amplitudes are
computed in Smith (Ref. 6). In order to provide the features mentioned above, much new code
and numerous new subroutines have been added to V072. Additionally, many portions of the old
code have been modified.



CHAPTER 2

PRELIMINARIES

Before deriving, in the next chapter, source vector coefficients and scattering coefficients
for the stator and rotor, we need to provide some preliminary information. The first section of
this chapter treats geometry and provides a definition of swirl by means of a coordinate system
transformation. Much of this is repeated from Ref. 1, but in less detail; the swirl part is new.
Standard waves, source vector coefficients, and scattering coefficients are defined in the second
section. The standard waves provide the form of the input and output for scattering. They are
also treated in Ref. 5. There is additional information about source vector coefficients and
scattering coefficients in Refs. 3 and 5.

2.1 Geometry and Definition of Swirl

The rotor/stator geometry is shown m Fig. 2.1. As seen there, a cylindrical polar
coordinate system is fixed in the duct with axial coordinate x; along the duct centerline. The
coordinate x; increases in the direction of air flow. Depending on the context, the origin for x;
may be different in different situations. The rotor turns with fan rotational speed Q in the
direction of increasing ¢. The duct has inner radius rg and outer radius rp. The rotor is made up
of B evenly spaced identical blades, and the stator consists of V evenly spaced identical vanes.

The axial and azimuthal sweep of the rotor blades and stator vanes are defined,
respectively, by the parameters xzzep, Yriep, and xsp, ysp specified in Fig. 2.2. These quantities are
defined relative to the leading edges of the rotor and stator at the hub. For the definition of the
wake, the parameter yzp, shown in Fig. 2.2 and defined relative to the rotor trailing edge at the
hub, is needed. The parameter xspac, also required for the wake, corresponds to the axial spacing
between the rotor trailing edge and the stator leading edge. All these parameters are functions of
radius r and are zero at the hub.

Fig. 2.3 shows an “unrolled” rotor/stator geometry, i.c., the intersection of the rotor
blades and stator vanes with a cylindrical surface of radius r. In this figure, o is the stagger angle
of the stator and oz is the negative of the stagger angle of the rotor. Angle o is defined this way
so that it will be the analog of o when switching from stator- to rotor-based derivations. The
blades have spacing 27r/B, and the vanes, 2n7/V. The local semi-chords of the blades and vanes
are, respectively, bg and b which are functions of r. Note that the (x;, x;)-axes, shown fixed to the
stator, will be used later for analysis with regard to the stator. A similar coordinate system,
shown fixed to the rotor, will be used later for rotor analysis. Other parameters included on the
figure are there for later reference and will be introduced then. Also note that some of the
parameters on Fig. 2.3 are further defined on Fig. 2.2.
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For the case of acoustic waves, solid body swirl is approximated by rotating the stator into
the approaching flow. It is introduced by using the same three-dimensional approach as in Ref. 1
only allowing both stator and rotor to rotate with speeds, respectively, of Q; and Q, (see
Fig. 2.3). The difference in speeds corresponds to the actual rotor speed . The stator speed €;
corresponds to -Q;, where Q; is the swirl speed.* Swirl is input by evaluating source vectors for
the stator and scattering coefficients for both the stator and rotor in the stator-fixed coordinate
system rather than in the inertial one. For the case of vorticity waves, the use of different
coordinate systems is not necessary, because swirl is included directly, using a two-dimensional
approach similar to that of Smith (Ref.6).

2.2 Standard Waves and Source Vector/Scattering Coefficient Definition

Three types of waves exist for two-dimensional duct flow (Refs. 3 and 6), upstream- and
downstream-going pressure waves, and downstream-going vorticity waves. For three-
dimensional flow, the physics is much more complicated and 1s the subject of current research
(Ref. 7). However, here we take the wave families to be the upstream- and downstream-going
pressure waves and two independent vorticity waves convected with the mean flow. The first
vorticity wave can be defined as a wave with axial and tangential velocity components (no radial
component) and corresponds to the two-dimensional vorticity wave; the second can be defined as
having tangential and radial components (no axial component). The pressure waves propagate at
the speed of sound; the vorticity waves are convected at the mean flow speed and do not create a
pressure disturbance. At this stage of development, SOURCE3D uses only the two acoustic
waves and the first vorticity wave.

These three types of waves are represented in terms of standard wave forms, which in turn
are specified in terms of modal amplitudes, or applying more general terminology, state vectors.
Using these quantities, we can define source vector coefficients and scattering coefficients. The
standard wave forms presented in this section are those that pertain to the stator-fixed coordinate
system which is the system in which all our final results are given.

Pressure waves, either upstream- or downstream-going, are represented by the expression

o o = ; P N
L= Y 3 S A&,mwf;m(r)e‘[’"’””"’“"“ -spar] 0

S§=—co0 f=—co n=1

where the state vector components, A,%m, represent the pressure modal amplitudes and are
normalized by the far-field pressure, p.. . This expression holds in the vicinity of the axial
interface locations x”, where P =1, 2, 3 (see Fig. 1.1). The subscript W = 1 represents
upstream-going pressure waves, W =2 downstream-going ones. Further, s is the blade passing

* The reason for the minus is that swirl is defined as positive in the direction of positive x;
(Fig. 2.3). However, retaining previous V072 conventions, ¢ and ; are positive in the direction
of negative x;.



fréquency (BPF) harmonic index; k, the vane passing frequency harmonic index; n, the duct
radial mode index;* and m is the circamferential mode order, where m = sB - kV. The function
v in (r) is the duct radial mode, Y %sk,l is the axial wavenumber,** and ¢ is time. In the code, as

would be expected, the infinite limits for s, k, n, as seen in Eq. (2.1), are truncated to give a finite
number of propagating and decaying modes for the coupling analysis. The user sets the criteria
for how this is done.

Note that not all of the indices appearing in the Ref. 5 version of Eq. (2.1) are present m
Eq. (2.1), because the same degree of generality is not required here. Further, note that, as we
proceed through this report, for convenience, we may sometimes omit some indices from symbols
such as those in Eq. (2.1), when it is clear from context what these indices should be. Also, the

variable x¥, when indicated, may sometimes represent locations other than those in Fig. 1.1.

The pressure in Eq. (2.1) is a linear combination of the standard modes for an annular duct
with hard walls. These modes are discussed in Ref. 1 and have the general form

W () Y 1=B). 2.2)

The radial modes here and in Eq. (2.1) are given by
Wmn(r)zAmn]m(Kmnr)'l'anYm(Kmnr)’ (2.3)

where J,, and Y,, are Bessel functions of the first and second kind, and ¥, is the duct mode radial
eigenvalue. The duct mode amplitudes A, and By, are chosen so that the maximum value of Ymn
over ris +1. Further, the axial wave numbers are given by

- =L[M(f.m_c—m&)ik4, 04
0

where the (+)-sign is for upstream-going waves (W = 1) and the (-)-sign is for downstream-going
ones (W =2). Also, ¢, is the speed of sound; M is the axial flow Mach number, Ufco, where U is

the duct uniform axial velocity; p = v1- M?: and

* Consistent with the convention in V072, radial mode indices here start at 1. However, in
conformance with standard practice, when output is printed, SOURCE3D adjusts this index to
begin instead at 0.

** These wavenumbers are the negative of those specified for TFaNS in Ref. 5. However, the
source vector coefficients and scattering coefficients calculated will be the same because the sign
in front of ¥y %m, in Eq. (2.1) is minus (-) and it is plus (+) in TFaNS documentation.
SOURCES3D utilizes the present convention in order to maintain consistency with VO72.

9.
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K gion =J(M) 'BZK;ZM ] (2.5)

Note that Egs. (2.4) and (2.5) differ from the analogous expressions in Ref. 1 in that, now, terms
mS); appear due to swirl. The analysis later in Appendix A will show why this is the case.
Additionally, the notation has been modified so that k replaces m as a subscript, where m, as
before, is given by m = sB - kV.

Standard vorticity waves will be represented here using the axial disturbance velocity
component ufy. All other information, such as the transverse component, will be derivable from
this. This component is given by an expression analogous to that for pressure,

ubr o =a. Y Y S mAb UL (re [ B =< )-sBr] 2.6)

s=—o00 k=—oon=1

Here W = 3, and the normalization parameter a.. is the far-field speed of sound. The state
vector, Aﬁ,m , represents the axial velocity mode amplitude uf;s,m divided by m, and the U,f (r)are
the duct radial mode functions associated with the vorticity waves. The normalization by m in
Avl;,b,is needed to eliminate undesired division by O when m = 0 in some of the actuator disk
formulas which are derived later. Note that the UZ(r)’s are not the solutions of a particular

differential equation associated with this analysis, but are an orthogonal basis set convenient for
use here.

Similar to the case for pressure waves, the axial velocity component in Eq. (2.6) is a linear
combination of vorticity duct modes of the form

U, (r)ei(m¢"Y X —SBCY) , 2.7

where here the axial wave numbers for wave type W = 3 are given (Ref. 6) by

mQ . —sBQ
Y skn =—"‘£U_” (2.3)

which guarantees that these waves are convected with the mean flow. The vorticity wave radial
duct modes are given by

2.9)

U,(r)= cos[(n—l)n(r— TH ]

p—ry
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The modes in Eq. (2.7) are the same as those derived and discussed in Ref. 6. However,
the notation has been changed to that used here and the form is slightly modified. Also, the
modes have the additional factor U,(r) because they are three-dimensional rather than two-
dimensional. The particular set of functions U.(r) was chosen to have the properties expected
physically for the vorticity modes; also because they provide a complete family of functions in the
mathematical sense. This selection is similar to Goldstein’s choice in Ref. 8, p. 223.

Before finally defining source vector coefficients and scattering coefficients, some
observations about scattering should be made. As per the discussion in Ref. 3, upstream-going
pressure waves will scatter into upstream- and downstream-going pressure waves and into
downstream-going vorticity waves. Downstream-going pressure and vorticity waves will do the
same. With regard to indices, the stator scatters input waves with indices si, ki, n; Into s; again,
but not necessarily into k; and ;. This scattering is viewed in the stationary coordinate system,
which is our stator-fixed system. The opposite is true for the rotor in the stationary coordinate
system; it scatters input waves with indices s;, ki, n; into k; again, but not necessarily into s; and k;.
Thus schematically we have

Stator: i, ki, m; - si, k. n,
Rotor: Si, Kiy 1 - s, k;, n.

Note that mode scattering for the rotor can give both positive and negative values for the output
harmonic s.

In SOURCES3D, the source vector coefficients, Bgym , are the mode amplitudes produced
by the rotor wake acting on the stator, i.e., they are the values of A%s,min Eqgs. (2.1) or (2.6) for
the output waves generated by the wake. The scattering coefficients are the mode amplitudes,
Sg,ﬁ,.sb,_s_kini , produced by a unit modal input wave, i.e. one with Aé}.&kin_ = 1. Altemnatively,

5K, adie g |
these coefficients are the ratios A%m/ Agis_kin,for the case where the input state vector
ol 1

coefficients are not necessarily unity but are arbitrary. Schematically, the scattering process can
be represented by the notation

P PP, B,
AWHm < S Wﬁ’islm;s,-kin,- AWx’is,-k,-ni :

Clearly, the indices must conform to the input/output requirements described above.
The elements Af, , Bé;m , and S;&Sbmm can be used to define several vectors and

matrices that are useful. The vector Af; is made up of elements Ag,s,m , where the indices (s.k,n)

range over all combinations that the program has selected as active. B{; is defined analogously,

-11-



and SVI;,};‘Vi is the collection of elements SWWs,m sk, OVEr all active combinations of indices

(si,ki,ni) and (s,k,n). As an illustration, consider the simple example where there are two
harmonics, s = 1 and 2. Assume that the only active values of kand nfors=1are (k=1,n=1).
For s = 2, assume the active valuesare (k=1,n=1)and (k=2,n=1). Take (P =2, W=1).
Then we can write

2 2 2
Af111 Bi111 S1311.19.1.1

2 _ | a2 2_ | p2 2 _ 2 2

A7 =140 ¢ Bj =<Bj11¢> Si3 = : Si3211211  Si2211221 |
2 2 22
Ajs21 B3 . 812221211 $122.212.21

where the dots in the matrix for S2 represent zero elements. Using the vectors A{, and BW,
we can define more precisely the vectors A" and B usedin Fig. 1.1. They are given by

Al Bf
Af =3a%t, BY =B
Af B;
These give overall vectors
Al B!
A= {A%}, B={B’
Al B}

An overall scattering matrix $ is also defined, whose level of inclusion of elements corresponds to
A and B. It contains elements for all the input and output modes of all the active waves at all the
various interfaces. It is displayed in Refs. 3 and 5. Consult these references for further details on
S as well as on other items in this section.

-12-



CHAPTER 3

SOURCE VECTOR COEFFICIENTS AND SCATTERING COEFFICIENTS
FOR THE STATOR AND ROTOR ALONE

In this chapter, we obtain source vector coefficients and scattering coefficients for what
will be called the “stator alone” and “rotor alone” cases. These are the cases where coefficients
are derived for the stator or rotor before adding mode scattering by actuator disks. Scattering
coefficients for the actuator disks will be presented in Section 4.1. Then, Section 4.2 will discuss
a procedure for combining these quantities with the present source vector coefficients and
scattering coefficients to produce the final values for the stator and rotor elements.

The approach for finding source vector coefficients and scattering coefficients is the same
as that in Meyer and Envia (Ref. 1) for obtaining acoustic wave pressure coefficients and as in
Smith (Ref. 6) for determining vorticity waves. We must first derive the upwash on the stator or
rotor coming from the rotor wake for source vectors or from unit modal amplitude standard
waves for scattering coefficients. The upwash is the component of velocity of these inputs that is
normal to the surface of the vanes or blades. Then the upwash is used to obtain the loading on
the vanes or blades by solving Kernel function integral equations. In Refs. 1 and 6, the stator and
rotor are modeled as linear cascades of flat plates which are divided chordwise into “strips” for
the calculation. The loads take the form of dipole distributions. These loads are then coupled to
the acoustic or vorticity modes to give output modal amplitudes.

This coupling is calculated using formulas for output modal amplitudes and output
vorticity wave modal amplitudes that are derived in Appendices A and B. The formulas for
pressure there differ somewhat from those in Ref. 1 because now there is swirl present between
the rotor and stator. Also, the formulas for the vorticity wave case differ from those in Ref. 6 n
that now we must modify the procedure to cover a three-dimensional rather than a two-
dimensional situation.

3.1 Upwash and Loading

For the stator, the upwash w is evaluated in the stator-fixed system and, as discussed m
Ref. 1, has the general form

W= 2 wsei(k:Z—Z’tVSB/V—SBm) (3. 1)

$==—0c0
on vane v, where w, is the Fourier coefficient of w, k, is the chordwise gust wavenumber, z is the

chordwise coordinate along the vane with origin at center-chord and extending from -b at the
leading edge to +b at the trailing edge, and v is the vane index,v =0, -- -, V-1

-13-



To determine the upwash in the form required by Eq. (2.1), we must first determine the
velocity of its source — either the rotor wake or standard input waves — in the direction of the
upwash, i.e. normal to the stator. Then we must transform this result to chordwise coordinates.
Details for obtaining w; and k; for the rotor wake are given in Ref. 1 and will not be repeated here.
From Ref. 1, we have for the rotor wake that

. —i[sB(ypp+ysp— tan0cz + tanc, /
w, = —W,sin(og +0t g e i{sB(yrp+ysp—*spac tanC.cp +Xspac,g tancy g )/r]

(3.2)

x ei[st(sina §+o0s0Lg tanC ey )/7)

and
sB .
ky =—(sino.g +costtgtan ¢y ). (3.3)
r

In the above, W; is the Fourier coefficient of the wake velocity, W, downstream of the rotor, o
is the rotor blade relative velocity flow angle, and xspsc is the blade trailing edge to vane leading
edge axial distance. The parameters O, yrp, ysp, and b have been defined previously; W, o,
Olcz, YRD, Ysp, Xspac, and b vary with radius . These parameters are shown on the schematic in

Fig. 2.3. There is a factor e “2%PCE®RELAT jnoinded in Eq. (3.2). This factor sets the phase
in the circumferential direction so that the exponential term in Eq. (3.2) equals 1 at the stator
leading edge at the hub. The subscript H in xspacg and Oz denotes that their values are taken
at the intersection of the stator leading edge with the hub.

Note that SOURCE3D evaluates the wake Fourier coefficients semi-empirically using
experimental data fitted to a Gaussian wake velocity profile. It allows several choices for these
profiles and also allows use of models for hub and tip vortex flows. Further discussion of the
wake and hub and tip vortices can be found in Refs. 1, 9, and 10.

To determine the upwash, when loading is from input waves rather than from the wake,
we first obtain the upwash velocity components for each s. We start with either the standard
pressure representation, Eq. (2.1), for acoustic waves or the standard axial velocity
representation, Eq. (2.6), for vorticity waves. Using the momentum equations as in Appendix C,
we can derive the axial, u, and transverse, v, components of acoustic velocity from Eq. (2.1).
Similarly, using the mass conservation equation, again as in Appendix C, we can derive the
transverse component for vorticity waves from the axial components appearing in Eq. (2.6).
Once u and v are known, the upwash is found by resolving these components into a vector normal
to the stator, using the relation

W = u SIn Os - V COS Ols. (3.4)
The result is

-14-



m;
—Co0sO.g + .
s ol 7 S 'Ysk,n,

w =
Ps SBQ+USYslqni_”liQs

SIn0g [m®—Y an; (51 =%° y-sBCx|

Agn,  (3.5)

mn; (r)e

for acoustic type waves, and

i{ b= seon; (512 -sBC i

W ==a,[ry g, cOSOLs — m; sinet 5[0 (e (3.6)

for vorticity waves, where w’ represents the s® harmonic of the upwash.

For the standard waves used in deriving the above relation, we have taken F=x5m

Egs. (2.1) and (2.6) so that the input waves, at this stage, originate at an interface located at x°,
the axial position where the stator leading edge meets the hub. For convenience, the W subscripts
have been omitted from the expressions, but it should be clear where they would have been
added. The 7 g, 's are those appropriate to the particular wave types; m; is the input wave

circumferential wavenumber. The variables ps and Us are, respectively, the mean density and the
uniform axial velocity in the stator element region; the other parameters have appeared
previously.

We next change from stator coordinates, x, to the chordwise coordinate, z, using the
transformation

x = xS —Xsp +2C0sU g +bCOS(ls, (37)

zZ . 2nvs  bsina
0=-2L 4+ Zsnag - + s
r r 1% r

> (3.8)
referring to the geometry of Fig. 2.3. Then we have

1:"-cosocs +Y sk, SIDOLS

S ©0

ps| sBRL+HUY gn, —mid i )

ei[—’Y skin; XSD—1M:Ysp ! r+(m; Ir)bsinCLs—Y g, boostis ]

Agt, (39)

(L sinos 4y gn, 00505 )2-27VSBIV—sBQU]
Xe T

for acoustic type waves, and
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w' = —a,,[ryskini COsOLg — m,-sinas]Uni (r)

ei[-’Y skin; Xsp—m;¥Ysp /r+(mi Ir)bsinas - sk bcosa s ]A

X . (3.10)

(L SN0 g~ g, 0OSCL5)Z—21VSBY V—5BO]
Xe T

for vorticity waves.

By inspection of Egs. (3.9) and (3.10), we now can write w; and k, . Because loading is
from input waves rather than from the wake, then w; and k; depend on k; and »; in addition to s.
To emphasize this dependence, we replace w; and k, with wy ;. , and k., . For input waves of

acoustic type (W= 1, 2), we have

ﬁcosoc s Y skin, Sino. g
W = ——|-L (n
skim; , min;

- Xep=M:Ysn ! :/r)bsi b
% e'T"‘Y:k,n,ISD m;ysp ! r+(m;/r)bsinc g~y g cosaS]Ask,-n,- 3.11)
= ws,k,-niAsk,-ni ’
and for vorticity waves (W = 3),

Wskn, = —a,‘,[r'yskini CosQ g~ ”lx'SiIlas]

% Uni (r)ei[—'y,kﬂxsp—m,-ysplﬁ(mi/r)bm‘nas-'y,k!,,‘.boosas]ASkini (3.12)
= Ws ko Astyn;-
For all three wave types,
Koy = S0 =7 g, COSCL . (3.13)

For the rotor, the upwash is evaluated in the rotor-fixed system where it has the general
form

— i(ky 5., 2—20VEV/ B=kVQU
we= X wpgme ! (3.14)

k=00

forvanev,v =0, - - -, B - 1. This is analogous to the representation in Eq. (3.1), only now sBQ2

is replaced by kVQ, wy ;, and ks, are the rotor counterparts of w;, and k4, ,and zis

-16-



the chordwise coordinate along the blade with origin at the center-chord and extending from -br
at the leading edge to +bg at the trailing edge. Because there are no wakes loading the rotor
blades, there are only upwashes produced by standard wave type inputs. Otherwise, there would
have been parameters w; and k also.

We obtain the upwash in the form of Eq. (3.14) and the expressions for wy ., and kg ;.p,
by employing a procedure parallel to that for the stator. We start with the same expressions as
derived before for the standard wave components  and v in the stator-fixed system, then shift
these expressions to the rotor-fixed system using the transformation ¢ = 5 +Q¢, where

temporarily ¢ is the polar coordinate in the stator-fixed system. The exponential ei(’"'*;_SfB <)

in the expression for the standard wave in the stator-fixed system then becomes
o @=Q0-si ) _ ilm—(s;B-kV)Qu—s;BQ5) _ ilm@=kVEY) 3 he rotor-fixed system, giving the

factor e V¥ appearing in Eq. (3.14). Using the resulting expressions for « and v, and
proceeding as in the stator case from this point forward, we then obtain relations comparable to
Egs. (3.11)-(3.13). In proceeding in this fashion, however, we use the relation

w=usino p —vCcoSt g (3.15)

instead of Eq. (3.4) and the coordinate transformation

x =xR—xRLED +ZCOS(X-R+bRC05aR (316)
o= JRED  Zgno _2TVE | DRSNOg (3.17)
r r \% r

in place of Eqgs. (3.7) and (3.8), again referring to the geometry of Fig. 2.3. In Eq. (3.16), £ is
the axial location where the leading edge of the rotor meets the hub.

The end result is that for input waves of acoustic type (W = 1, 2), we have

m. .
—-COSOL R +7Y g, jn, SINOLR
e r !

= Ar
esm T T SBQ+ URY s, — miL2s s 1)

h o X -m; Ir+(m;/r)bg sina 4 DR cOSQL :
% eT"Y:,kn, RLED =M YRLED ! T+(m; /)bR SINC R~Y s4n DR R]As,-lm,- (3.18)
= kasi"iAsz"mi

and, for vorticity waves (W = 3),
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Wisin, = —a,,[r'y s;kn; COSQLR —m; SINCL R]Un,- (r)

9 ei[-y,,.,,,,.xw—miywm(w/r)bnsin“r‘fs,-bubkws“k]A& . (3.19)
13
= Wi sin Asiin; -
Further,

ki o = —LSIN0LR =Y ; pn COSOR (3.20)
%1 r 1 1

for all three wave types. The parameters O, Xrrzp, Yrizp, and bg, used above, have been defined
previously; they are functions of radius. The quantities pg and Uy are, respectively, the mean
density and the uniform axial velocity in the rotor element region. Analogous to the situation for
the stator, the input waves for the upwash calculation originate at an interface located at x*, the
axial location where the rotor leading edge intersects the hub.

Returning now to the stator, once the upwash is known, we can use the theory in Ref. 1 to
find the loading. In particular, we determine fi(rz), the s* harmonic of the elemental vane
chordwise loading function, which is defined in Ref. 1; refer there for more detail. We mention
here only that £,(r,z) is related to the s® harmonic of unsteady loading, Ap,, on vane v = 0 through
the relation fi(r.z) = ApJ/psU,sw;, where Uys is the fluid velocity relative to the stator vanes.
After fi(r,z) is determined, it can be used in formulas derived in Appendices A and B to obtain
pressure and vorticity axial velocity modal amplitudes, which, in turn, give source vector
coefficients and scattering coefficients.

As per the discussion in Chapter 3 of Ref. 1, f«(r, z) is determined as the solution to the
integral equation

b
= | K- nion2,
b

(3.21)

where K.(z - y) is the cascade kernel function for the stator. For standard wave input rather than
rotor wake input, k, and f; should be replaced by Ksn, and fpn - K. is evaluated by using the

following parameters (see Ref. 1):

Br: dl—M,?s ’
Reduced frequency: K =-sBQb/ (Bcg),

Inter-vane gap: h=2nr/V,

Vane stagger angle: o,
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2nsB

r: ==
v

[1+ MM, s(r/ rp)sinog / B21.

In the above, ¢s is the nominal speed of sound in the stator element region, Mr is the rotor blade
tip rotational Mach number, and M,s is the Mach number of stator relative flow, Uslcs. The
negative sign is used in Eq. (3.21) because we need the loading that induces a normal velocity
equal, but opposite in sign, to the wake or standard wave input.

For the rotor, the loading function for standard waves is f; s, (r,z) rather than
fskm, (r,2). If we proceed through the analogous steps for the rotor as previously described m
Ref. 1 for the stator, we obtain the integral equation

bg

. d

e+ == [ Kea= Do 33 (3.22)
—bp R

that must be solved to determine f sm; (r,z). From the derivation of the Kernel in this case, it is

easily seen that to evaluate K. for the rotor, the parameters above for the stator now must be
changed to:

Br: \JI_M?R’

Reduced frequency: K =—kVQbg / (B2cr),
Inter-blade gap: h=2nr/B,
Blade stagger angle: -o.p,

2nkV

r: + [1-MrMg(r/ rp)sincg / B2].

In the above, cz is the nominal speed of sound in the rotor element region and Mz is the
Mach number of rotor relative flow, U,z /cr. The differences in I' between the stator and rotor
are due to the fact that for the stator the inter-vane phase angle is given by ©¢g=-2nsB/V,

while for the rotor, its analog, the inter-blade phase angle, has the form o =+2nkV /B (see
Ref. 3 for discussion of inter-blade phase angles).
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3.2 Source Vector Coefficients and Scattering Coefficients

To find source vector coefficients and scattering coefficients from the loading, we use the
formulas for acoustic output wave pressure modal amplitudes and vorticity output wave w/m
modal amplitudes. The formulas and their derivations are given in Appendices A and B. These
results are obtained by adapting the approaches found in Refs. 1 and 6, respectively, to the
situation here.

The source vector coefficients Bwa, for acoustic output waves (W = 1, 2), as per the
definition given in Section 2.2, are just the pressure modal amplitudes pwa» given by Eq. (A.24)
when the input loading is from the rotor wake upwash. Similarly, the source vector coefficients
Bws for vorticity output waves (W = 3) are just the /m modal amplitudes given by Eq. (B.12).
Thus we have

(1p b
[ Coanrws ) [ £, 2) Dign(r. ) dedr  for W=12,
Bn =1 - (3.23)
> {Cwm(rz)ws(rz)J f:(11,2) Dy (1, 2)dz}Ar,  for W =3,
I=1 -b

where the subscript W, which was implicit in the last section, is now shown explicitly. In the
above, wy(7) is given by Eq. (3.2); Cwan(r) and Dwax(r, 2z) by Egs. (A.25) and (A.26) for W =1, 2;
and by Egs. (B.13) and (B.14) for W = 3. The elemental vane chordwise loading function f(r, z)
is determined by Eq. (3.21). As discussed in Appendix B and illustrated in Fig. B.1, for the
vorticity wave case, the annular duct is subdivided into L sub-annuli with widths Ar; = (7; - 11.1), l
=1,---,L At this stage, the interface for output waves is at x°, the axial location where the
stator leading edge intersects the hub.

To obtain scattering coefficients for the stator, we apply Eqgs. (A.24) and (B.12) as above,
only now the loading is that provided by unit modal amplitude standard input waves with wp ;.

given either by Eq. (3.11) or (3.12) with Awpg, =1. We have used subscripts i to denote input

modal indices; since the input and output harmonics must be the same, no i has been used with s.
We can write

14)) b

| oot "W o O [ i, i (72) Diien (o 2)clzdr - for W=1,2,

n -b

Sww,stmssiin; =\ (3.24)

L b
Y. ACwen )W, ken, () I fsw. ke, (11:2) Dyygen (0, 2)dz2}A1; for W =3,
=1 -b
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where W; =1, 2, 3. Also, w“‘“’ivki"i (r) is defined by Eq. (3.11) or (3.12), and Cww(r) and

Dwsn(r, 2) are the same as before.

Thus far, the source vector coefficients given above are for output interfaces located
where the leading edge of the stator meets the hub, i.e. at x°. The same is true regarding the input
and output interfaces for scattering coefficients. Refer now to Fig. 3.1, which shows prior and
new interface locations. For the stator alone case, we shift the interfaces so that downstream-
going input waves originate from an interface at x* and upstream-going input waves from an
interface located at the farthest downstream stator trailing edge coordinate with respect to radius,
x*. Downstream-going output waves originate at interface x° and upstream-going output waves at

x*. More generally, we designate the new input and output interfaces, respectively, as xB and

xF.

. P j

Because of the factor ¢ Y% ~*) in Egs. (2.1) and (2.6) for standard waves, it is
easily seen that the modal amplitudes of output waves associated with source vector coefficients
are changed by an amount

. P
Efgn=e"" i (5= ), (3.25)

where Yws is the axial wave number in the stator element region. Scattering coefficients are the
ratios of the output to the input of state vector coefficients, ie. Afrsin ! Av}fisg.n,. ; therefore,

using reasoning similar to that above, scattering coefficients must be multiplied by the ratio of the
output to input shift exponentials, which is the ratio

o~ Wk (2 =5°)

PF, =
FWW,—sbz;skin,- - ""YW-sk-n-(xﬁ x5y (3.26)
e b Lot Mot §

Thus Egs. (3.23) and (3.24) become

( p b
Ebin | Coran(Ws(?) [ £:(r,2)Dwgen (r,2)dzdr for W =12,
B =1 N (3.27)

L b
EVPE’SIMZ {CWskn(rl)Ws(rl)J £:(n,2) Dyygin(r1,2)dz}AR, for W =3,
=1 -b

and
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,

14)5) b
Fvg‘;};sbz;s’qni ,[ Cwsin (r)wsw,-,kfni () J I, jem, (r:2) Dyt (r2)dedr for W =1,2,
b

SPP,- _ H
WW;skn,sk;n; — )

L b
PP -
Fwt stmsten: 2 ACHstn D, i, (1) | Fi kim0 2) Dt (1, 2)d0)AT, for W =3,
L =1 -b

(3.28)

where W; = 1, 2, 3. For cut-on waves, the F’s of Eq. (3.26) merely amount to a phase shift.
However, for input or output waves that are cut off, the F’s include real exponentials. These
quantities serve the essential role of keeping reflection and transmission coefficients small for
decaying waves and avoiding large off-diagonal elements in the scattering matrix.

Scattering coefficients for the rotor are derived analogously. Using Egs. (A.45) and
(B.15) of Appendices A and B, respectively, we have

145) bR
FWP&sm;s,-bk J CWslm(r )ka;,Si"i (r) J f kW, .s;n; (r’Z)DWSb' (r’z)dzdr for W=12,
TE —bR

L by
PP PP, _
Switsions.don; = | Fistmsgon; D {Coisn Wity s (71) j Jiew, s.n; (11:2) Diysin (11, 2)d2} A1y
=1 —bR

for W =3,

(3.29)

where W; =1, 2, 3. Additionally, wkﬂli Sim; (r) is given by Eq. (3.18) or (3.19), and Cyg, ()
and Dy, (11,2) by Egs. (A.46) and (A.47) or Egs. (B.16) and (B.17).

The term F{;ﬁ skn;s ko, 10 EQ. (3.29) shifts the location of the input and output interfaces

in analogous fashion to FWP% skm;skn, £OT the stator case. It is given by

o~ Wt (5 =2%)

Fo s o, = (3.30)

. B Ry "
e_’Y W;sikn; (x=x)

Without this factor, the interface for both input and output waves would be located where the
rotor leading edge meets the hub, i.e. at xX. Instead, referring to Fig. 3.1, the output interface is at
x* for downstream-going waves and at x', the farthest upstream trailing edge location with
respect to radius, for upstream-going waves. Input interfaces for upstream- and downstream-
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P P

going waves are the reverse. The variables x** and x° represent the locations x? and x',
depending on the context, and Yww, is the axial wave number in the rotor element region.

There is an additional item that must be taken care of before the standalone scattering
coefficients are completely specified. For both the stator and rotor, we must add a term

1x F%sbz; skn 1O the transmission coefficients for those waves that are scattered into themselves,
ie. waves for which W; =W, si=s, k =k mn =n This term is added to account for

transmission of the original wave through the stator or rotor. Though not appearing explicitly in
Eqgs. (3.28) and (3.29), this term will now be understood to be included where appropriate. The

function Fv{;ﬁsb,;sb, is defined either by Eq. (3.26) or (3.30), except that the subscript i is
removed from all variables except P; in those definitions.

Before closing, it should be noted that SOURCE3D employs non-dimensional geometry
and performance parameters rather than the dimensional ones used above. This means that for the
stator it utilizes lengths rp and by and speeds cs, Us, and Uy, defined with respect to the
stator element region. Here, br is the vane semi-chord at the tip. Using these parameters, the
formulas defining the stator source vector coefficients and scattering coefficients can be written in

terms of the dimensionless variables Ms = Us/cs; Gecs = 2birp; G, =rafrp; Ygm = Ysin™0s Kokn
= kg, 7p; Mr, the rotor rotational Mach number at the blade tip; M., the swirl rotational Mach
pumber at the blade tip; Xmm = Km?p; X = r/rp; Xs = xsp/2br; ys = ysp/2br;  Xsor = Xspacl2br;

and b = b/2br. Non-dimensionalization is carried through in the rotor case using analogous
rotor parameters and dimensionless variables.
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CHAPTER 4

ADDITIONAL THEORY

Two additional items of theory will be needed to complete the calculation of source vector
coefficients and scattering coefficients: a discussion of flow turning using an actuator disk, and
then a discussion of a combined element to couple either the stator and actuator disk or the rotor
and actuator disk into one element. These topics will be covered in the sections below.

4.1 Flow Turning at the Stator and Rotor

The theory developed thus far provides swirl between the rotor and stator, but does not
include the flow turning at the rotor and stator that must accompany it. In this section, results
will be presented that extend the two-dimensional approach of Ref. 3 to the three-dimensional
situation shown in Fig. 4.1. A first disk will turn the flow at the rotor leading edge and a second
one will straighten it back again at the stator trailing edge. The jumps in mean flow properties are
given by input to the prediction program. Then the associated jumps in unsteady properties, such
as pressure, axial velocity, and tangential velocity, are determined using linearized versions of the
equations of conservation of mass, transverse momentum, and axial momentum.

With reference to Fig. 3.1, the actuator disks are located at the inlet interface x', which is
the furthest upstream axial location with respect to radius of the rotor leading edge, and at the
exit interface x°, which is the furthest downstream axial location with respect to radius of the
stator trailing edge. Imput and output waves for the rotor actuator disk have their origins at the
rotor upstream interface x' and at x. Input and output waves for the stator actuator disk
originate at x° and at the stator downstream interface x’. Note that these locations are not the
final ones for rotor and stator input and output waves. These locations will be set by the
combined rotor and stator elements discussed in the next section.

Scattering coefficients at the actuator disks are based on the reflection and transmission of
standard waves impinging on the disks. The harmonic indices s and k£ — and therefore m, stay the
same for both input and output waves, so that actuator disk scattering is only among wave types
(pressure and vorticity) and among radial mode orders. Similar to the two-dimensional situation
(Ref. 3), there are three possible types of scattering. These interactions are shown i Fig. 4.2,
where, for simplicity, only the subscript W, for W = 1, 2, 3, has been included with the state
vector coefficient A; the indices P, s, k, and n; or n are implied but not shown. The parameters A;
and A, are pressure amplitudes, shown as solid arrows; the quantity A; represents the amplitude
u/m for vorticity waves, shown as dashed arrows. In Fig. 4.2, incident pressure wave A; gives
transmitted pressure wave A;, reflected pressure wave A, and reflected vorticity wave As. Inputs
A and A; give similar results. Nine scattering coefficients will result from these interactions for
each set of indices s, k, n;, and n. The others will be zero.
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Scattering coefficients will first be derived for input and output wave origins at the
actuator disk axial locations. Later, the wave origins will be shifted to the desired locations
shown in Fig. 3.1. The details of the derivation of these results are given in Appendix C. The
results in this Appendix hold for both the rotor and stator; only the input data for each will be
different. As discussed in Ref. 11, the actuator disk scattering coefficients are given by the
elements of the matrix K;,, derived there, and given by Eq. (C.58) here. This quantity satisfies the
matrix equation

Aou; = Kio A,‘,,, (41)

where A, and A,. are vectors made up, respectively, of input and output state vector
coefficients. They are given by

Al Af
Ay ={A5 A ={AS L, (4.2)
A§ A

where the elements A{; in the brackets above are the vectors defined at the end of Section 2.2.

The quantity a denotes values on the upstream side of the actuator disk, i.e. those before the
jump; b represents values on the downstream side, i.e. those after the jump. The elements of K;,

give the ratios A@sb, / A‘}é sk -

To obtain the final actuator disk scattering coefficients, the input/output wave interfaces
must be shifted to x’ and x' for the rotor disk, and to x’ and x° for the stator disk. This is done
using the same approach as for the stator or rotor alone in Section 3.2, only now the just-
mentioned axial locations are used. Thus each scattering coefficient given by K;, must be

multiplied by a factor Fﬁ{g_ sknsshn, given by

e-i‘Y Bt (2 =x')

PR, =
FWW,-sbL;:bz,- TR, ) 4.3)
e T T
for the rotor disk, and by
_wP P__e
PP _e Y Wakn (X =) @4
WW,;skn;skn; —iy v?s"-g,.‘ (=B -x%) .

€

for the stator disk, where x’ and xF are the appropriate new input/output interface locations.

Hence, the final actuator disk scattering coefficients are given by the relation
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PP, _ PPR,
S WW.shoskn; — + WW;skn;skn; K ioWW.skn;skn; > 4.5)

where the K ww.skn;skn, are the individual elements of Ki,.

As previously mentioned, before the coefficients above can be used SOURCES3D, they
must be non-dimensionalized. This is accomplished in the same way as discussed previously at
the end of Section 3.2, using the same dimensionless variables as described there. The additional

dimensionless variable Ay, = Mg / Cp» is also needed, where A%, is defined in Appendix
Cand cp isthe medium nominal speed of sound in the appropriate region.

4.2 Combined Elements

Thus far we have derived source vector coefficients and scattering coefficients for
separate stator alone and actuator disk elements. We have also obtained scattering coefficients
for separate rotor alone and actuator disk elements. Let us refer to the coordinates in Fig. 3.1. In
the former case, the axial interfaces are at % and x° for the stator, and at x° and x° for the
disk. In the latter case, they are at x and x* for the rotor, and at x* and x' for the disk.

However, SOURCE3D combines the stator and actuator disk into one element and does
the same for the rotor and actuator disk. The combined stator/actuator disk element has axial
interfaces at x> and x°; the combined rotor/actuator disk element has interfaces at x* and x’.
Source vector coefficients and scattering coefficients for the combined elements are derived and
presented in Appendix D. For the stator case, they are the elements of the source vector Bcous
and the scattering matrix Scoms given there, respectively, by Egs. (D.19) and (D.18). For the
rotor case, the scattering coefficients are the elements of the scattering matrix Scome described
there for the rotor. As should be obvious, the elements of Bcomz and Scomz for the stator
depend on values of standalone stator coefficients and actuator disk coefficients. The same is true
for Scoms for the rotor.
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CHAPTER 5

CONCLUDING REMARKS

This report has provided the analytical documentation for the SOURCE3D Rotor
Wake/Stator Interaction Code. Source vector coefficients and scattering coefficients have been
derived for the stator and rotor source elements, each in isolation, for use in the three-dimensional
TFaNS (Theoretical Fan Noise Design/Prediction System). They have been obtained by
extending the approach of the earlier V072 Rotor Wake/Stator Interaction Code.

The V072 code uses only the stator as its noise source. The SOURCE3D program has
added a rotor element, swirl flow and vorticity waves, actuator disks for flow turning, and
combined stator/actuator disk and rotor/actuator disk elements. When used in TFaNS, the rotor
element will allow frequency scattering and reflections from the rotor, neither of which V072
provides. As mentioned previously, frequency scattering is the mechanism by which an original
blade passing frequency (BPF) harmonic is scattered into other harmonics. The inclusion of the
rotor element, swirl, and actuator disks accounts for mode trapping and amplification in TFaNS
and explains features of experimental engine noise data not predicted by V072 (see Ref. 10).
Mode trapping, as described earlier, is the phenomenon where the BPF mode grows between the
stator and rotor blade rows through repeated reflections. This mode does not escape through the
inlet or exit, but its energy is scattered into higher harmonics and is dispersed at two and three
times BPF.

It should be noted that the SOURCE3D program has been verified thoroughly vs.
Hanson’s CUP2D two-dimensional coupled cascade noise prediction code using thin annulus test
cases. Based on a modified advanced ducted propeller (ADP) geometry, the test model had 16
blades, 22 vanes, and was run at a corrected rotor speed of 9,600 rpm. Hub radius rg was 8.15
inches and outer radius rp was 8.164 inches, giving an annulus that was sufficiently narrow for
the case to be considered two-dimensional. For this situation, the two-dimensional predictions of
CUP2D matched the three-dimensional predictions of SOURCE3D very closely. Comparisons
were made for source vector coefficients and scattering coefficients for the stator and the rotor
with and without swirl, with and without actuator disks, and for the actuator disks and the
combined elements each in isolation. In all instances, the results were nearly identical.

It should be pointed out that for two situations, SOURCE3D occasionally gives values of
scattering coefficients which are unrealistically large. When this occurs, it is generally obvious to
the user. The problems are caused by limitations in the original V072 model that carry over to
SOURCES3D due either to two-dimensional load divergence or to duct resonance at three-
dimensional cut on. Load divergence is a phenomenon that occurs in the two-dimensional
unsteady aerodynamic theory when the normal distance between vanes or blades is half the free
space acoustic wavelength at one or more radial locations. The problem at duct cut on arises
from the factor k., in the denominator of the three-dimensional Green’s function and in three-
dimensional mode amplitude equations such as Eq. (A.14). This factor, defined in Eq. (A.10),
goes to zero at three-dimensional cut on. In a fully consistent three-dimensional theory, this zero
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limit would be matched by a load distribution that also goes to zero at cut on. However, in the
present model, our loading is based on two-dimensional strip aerodynamics. The two-dimensional
loading does approach zero, but at the two-dimensional cut-on frequency. Because two-
dimensional and three-dimensional cut-on frequencies are markedly different, computed pressure
harmonics diverge at duct resonance. More will be said about these items i Ref. 12, which
discusses three-dimensional scattering physics results using SOURCE3D.

In conclusion, the SOURCE3D code adds the critical new ingredients of swirl, frequency

scattering, and flow turning to the previous capability. This allows us to make predictions that are
much more complete than before.
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APPENDIX A

PRESSURE MODAL AMPLITUDES FOR A SYSTEM WITH SWIRL

To obtain pressure modal amplitudes for the case where there is swirl between the rotor
and stator, we apply an approach very similar to that in Meyer and Envia (Ref. 1) for the case
where there is no swirl. There are separate formulas for the stator and rotor cases. As stated in
Section 2.1, swirl is taken to be of solid body type (V = Q.r) for the three-dimensional case here.
It is implemented by letting the stator rotate at angular speed €; =-£2;, the negative of the swirl
angular speed, and the rotor at angular speed €, (see Fig. 2.3). The difference, (£; - £,), is
equal to Q, where Q is the rotor angular speed. For both the stator and rotor, the analysis
starts in the inertial system and ends, finally, in the stator-fixed coordinate system, which is where
modal amplitudes must be evaluated.

For the stator case, we begin with the Green’s function equation for unsteady pressure, as
given by Eq. (41) of Ref. 13.* Itis written as

pan=- [ [ n() V6@.y,t-1)Ap(y,1)dS()dr (A1)
— §

in the inertial reference system. In this equation, x and y are, respectively, the field point and
source point duct coordinates, x = (r,a,xl) and y=(".¢, ¥); S is the airfoil surface area; n,
the unit normal to this surface; Ap, the pressure loading on this surface; V, the gradient
operator; and ¢ and T, the field and source point imes. The axial coordinate origin is taken to
be at the location where the stator leading edge meets the hub, 1.e. at x; = x° (see Fig. 3.1). For
simplicity, the indices P and W have been omitted. It should be clear from context what they
should be. G(x,y, t - T) is the Green’s function given by

Gy, —1) = ——— Y ‘an(r)l‘i’mn(r) ) | 1 W (@)0r-2)-0G-) g

4mi o _ (@)
(A.2)
where
Y (@) = M;‘” + k”‘"gm)sgn(yl -x) (A.3)
B Cs B
and
2
i () =\[(—°’—J — B - (A4)
Cs

* This reference was the predecessor of Ref. 1 as documentation for V072.
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Also, T'= (rg - r},); o is radian frequency; cs is the speed of sound in the stator element
region; M; is the axial flow Mach number, Us/cs, where Us is the uniforrm axial velocity in the

stator element region; and P = 1/ 1—- M§ . The other parameters have been defined previously.

Let us shift the source point y to the stator-fixed frame using the transformation
0 =0"+ QT =¢"-Q1, (A.5)

where ¢’ is the source point polar coordinate in the stator-fixed frame (see Fig. A.1). Also, we
write Ap(y,t) in Fourier series as

Ap(y.T)= Y, Ap,(y)e~ P, (A.6)

Ss=—00

where y is taken to be on the vane mid-surfaces Sy, which have unit normals #(y). Then,
combining Egs. (A.1), (A.2), (A.5), and (A.6), while rearranging, we can write p(x,t) as

o0

pED=Y Y Y Wme™ [ ——— 4ka el

§=—00 m=—ocon=1

(A7)
X [ W n V)V, [T T @ON g () j omsBamaLT: dedS(y)do,

Su

where V, is the gradient taken with respect to the y coordinates.

Next we integrate over dt, then over dw, while recalling that j ™ dr =218 (x),

—oc

where 8(x) is the Dirac delta function. Then ® =sBQ -m{); and we have

- © © i(mo—y , . X ) —i(sBQ-mQ )t 1
p(x,t)= W, (r)e' mas¥1) g sH___ T
PARIPIAE T

o (A.8)
X [ W @) 9, [ T |0p (3)dS ),
Su

where
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Y mns =Y mn (SBQ —mL2)

) _12' [MS(SBQ—mQS) . ka (A.9)
B Cs
and
Ky = ko (SBQ— mQ,)
_ J(sBQ—mQST_BzK?nw (A.10)
€s

The (+)-sign in Eq. (A.9) is associated with upstream-going waves (W = 1) and the (-)-sign with
downstream-going waves (W = 2).

Let us now shift the observer point y to the stator-fixed system where the modal
coefficients are evaluated. We use the coordinate transformation

O0=0+Qt=0-Q, (A.11)

where ¢ is the field point polar coordinate in the stator-fixed frame. Then Eq. (A.8) can be
written as

C T Vv Km0~ pusy) —isBQ2 1
px,t)= Vm(r)e ms~1le —_—
s=z—°°m=2—‘wnz=‘1 ™ 21’rkrrms

. (A.12)
X [ W (P)A)- V[TV m) 4p (3)dS(y)
Sm
and p(x, r) has the form
PED= Y D P (e T B (A.13)
§=—c0 m=—con=]
In Eq. (A.13), pm; is the modal amplitude coefficient we desire. Itis given by
1 N i(~md’
Prns =5 | W @IR) - V, [T T |Ap, (3)dS(3). (A14)
2iTk,,,, Sur

This is the same as Eq. (4.29) of Ref. 1, except that now (sBQ - mQ,) has replaced sBQ
in the definitions of Ymn., and km,. The result of these transformations is that the axial
wavenumber (and therefore cut-on frequency) given by Egs. (A.9) and (A.10) has been modified
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to a form exactly analogous to that of the two-dimensional theory. The procedure retains the
correct frequencies, sBQ, in the stator frame.

From this point on, we proceed exactly as in Ref.1. Along with other relations, we use the
expression

7(y)- Vy[ei("""'”myl)] = i(ﬁ,cosocs +7Y ins sinas)ei("""'””""y’) , (A.15)
r

the coordinate transformation

y1 =-xsp +bcosag+z'cosag, (A.16)
q)’:(—ySD +bﬁnas +z'sinocs)/r’, (A.17)
and, the equality
V-1 ]
= 2 pSUrSws (r)f: (r’Z)e—zmwBIV s (A.18)
v=0

where v is the vane index, -2rsB/V is the inter-blade phase angle o5 for the stator, z’ is the
source point chordwise coordinate along the vane, and the other parameters have been defined
previously. For standard wave input, modal index subscripts are added to w,(r) and fi(r,z) m
Chapter 3.

In this process, we also evaluate a summation

v-1
v=0
which equals V when
m = sB - kV (A.20)

and, otherwise, equals zero. The result is Eq. (4.36) of Ref. 1, which gives pms as

Drns = 2I“k,,,,u J V ,;m(NU sWs(’)( COSOL g +ymsinas)
) (A.21)
x ¢!(Y masXsp+mysp/r) J fs(r,z)eqw"""ooms_msmas/r)(“b)]dzdr.

-b
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Eq. (A.20) permits us to change the convention for the subscripts On Pmas, Ymns, and K,
and to write Eq. (A.13) in the form

prED= 3 Y Y Dl g (e’ =B (A.22)

k=—0on=] s=—co

where Ywin and kws are given by the right-hand sides of Egs. (A.9) and (A.10). Further, Km
in Eq. (A9)is now kws because W's have been made explicit Additionally, W =1 or 2,
because output waves in this section are pressure waves. With this new notation, Eq. (A.21)
can be written, finally, as

o
Vv m .
PWskn = Z?Z j Wm(’)UrsWs(’)(—Cosas +Y Wk Smo‘s)
skn Ty r
) (A.23)
x ei(—’Y Wk Xsp+MYsp ! T) J‘ £.(r.2) ei[('Y Wsim COSQLg—msindt g /r)(z+b)] dzdr.

-b

Note that this modal pressure amplitude is the same as that in Ref. 1, except for one major
difference. Because of swirl, (sBQ - m€)) has replaced sBQ i Yws. and kws.. Further,
observe that w; and £, will depend also on input wave modal indices k; and ;, in addition to s, for
the case of standard wave input, as discussed in Chapter 3.

Eq. (A.23) can be written for later convenience as

p b
Pwsin = _[ Cwsien (W, (r) I £.(r,2) Dy (7, 2)dzdr (A.24)
g -b

where

1%9) ;
CWslm (r) - Ps rsS v m,,(r)(ﬂcos(xs +Y Wein sina. S)el("YWsImISD+m}’SD/r) , (A25)
2I“ksb, r

Dst‘ (r,Z) = ei[(’Y Wskn oosas-msinus/r)(z+b)] . (A.26)

For the rotor, we proceed similarly. Analogous to the stator case, the axial coordinate
origin is taken at the point where the rotor leading edge meets the hub, ie. at x; = x® (see

Fig. 3.1). We start with Eq. (A.1) and shift y= (r,o’, y;) this time, however, from the inertial
to the rotor-fixed frame. Here Egs. (A.5) and (A.6) are replaced by
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o =0"+Qrt (A.27)
and

Ap(y,1)= Y, App(3)e ™, (A.28)

k=—cc
where qS’ is the source point polar coordinate in the rotor-fixed frame (see Fig. A.2).

Using these relations, the analog of Eq. (A.8) is

oo oo oo = . _ 1
x,t - l(m—v ,mkxl) z(kVQ mQ] )t
p( ) 2 2 2 W"m(r)e ¢ 2iTk

= —c0 pp=-—con=1

. (A.29)
x | "’m<">ﬁ<y>'Vy[e“"”‘° **"“*y‘)]Apkcwdscy),
Su

where Sy now represents the rotor blade mid-surfaces, and Ynu and k.. are given by Egs.
(A.3) and (A.4) with

o =kVQ+ le . (A3O)

Similar to before, we shift the field point x from the inertial to the stator-fixed coordinate
system, using that

0=0-Q, (A.31)

where ¢ is the field point polar coordinate in the stator-fixed system. Then the rotor counterpart
of Eq. (A.13) becomes

oo oo

plx,) = 2 2 2 p”mk\',"m(r)el{M"mer(kVQ+m1+sz)1]’ (A32)

k=—c0 m=—ocon=1
where pmu is the modal amplitude for the (AVQ + mQ; + m€Q,)* harmonic. Itis given by

1
Prok =ik

[ ¥ () Vy[ei(‘“‘s'”w”)]Apk(y)dS@). (A33)
Sm

We will see later that Eq. (A.33) gives the modal amplitude we desire.

Eq. (A.33) is analogous to Eq. (A.14). Thus we proceed exactly as for the stator case,
only in place of Egs. (A.15)-(A.18), we use
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n(y)- Vy[ei(""""PY monk ) )] = i(ﬂlcosa R +Y e SIDO. R)ei(_"""ﬂ mak)1) (A34)
r

Y1 =—Xgpp +bR COosO p +Z’COS(XR, (A.35)
¢’ =(~ypp +bgsinag +z'sinag)/r, (A.36)
“ 2inviV /B
Apr =Y, PRUmWi(D) fi (r,2)e 7B, (A37)
v=0

where z’is the source point chordwise coordinate along the blade. The exponent in Eq. (A.37) is
different from that in Eq. (A.18) because the inter-blade phase angle or for the rotor is
+27tkV/B.* This procedure gives

D
B m .
PWmnk = 218;:”}‘ j Wmn(r)Uerk(r)(TcosaR + Wonnk SIDO‘R)
44
b (A.38)
X ei(—’ywxw+mm/r) J' fk(r,Z)e'[(Y Wk oosa.R—msinaR/r)(z+bR )]dZdr,

—by
where W’s have been added.

In deriving Eq. (A.38), we evaluate a summation analogous to that in Eq. (A.19), i.e.,

32: (2FIV(mARV)/ B (A.39)
v=0
which equals B for
m = sB - kV (A.40)

and is zero, otherwise. Hence m must assume the same values as it did for the stator.

Using Eq. (A.40) and the fact that Q = Q; + Q,, we find that the time-dependent
exponential in Eq. (A.32) can be rewritten as

o~ EVQAMQ M) _ ~i(kVQ+mQ)

A4l
= omiVQH(B-KVIQY _ —isBQY ( )

* The sign is the reverse of that for ¢ g for the stator, because the relative motion between the
rotor and stator is reversed.



Hénce, we see that pwmee is the modal amplitude we wish. Further, recalling Eq. (A.30), we have
that

® = kVQ+mQ; = kVQ+m(Q—-Q,

A 42
=kVQ+ (sB=-kV)Q—mQ, = sBQ-mQ, ( )

so o 1is the same for the rotor as for the stator. Thus, referring to Eqs. (A.3) and (A.4), Ymnt
and k..t are the same as for the stator, i.e. they are given by Eqgs (A.9) and (A.10), only Ms, cs,
and B there must be replaced by their rotor counterparts.

Changing the convention for the subscripts On Pwmat, Yiwmm, and kmaz, as we did for the
stator, we have, finally, that

Pw (x,1) = 2 2 z PV mn(r)ei(m‘b"YW;b.XrSBQt) (A.43)

k=—0o n=1 §=—oo

and

PrB
2Tk,

p
m .
Pwstn = J \ym(r)U,RWk(r)(TCOSO‘R +Y Wskn SmaR)

" , (A.44)
R
% ei(_y Wen*RD +MYRD I T) j fk(r,z)ei[('y Wkor oosaR—msinaR/r)(z+bR)]dzdr.

_bR

In Chapter 3, subscripts s; and n; have been added to w; and s, to indicate that the upwash and
associated loading are produced by input from standard waves that have these these modal
indices. Similar to the case for the stator, pwa, can be rewritten as

14} b
Pwsin = | Ctn (W (1) | (1, 2) D (. 2)eedr (A.45)
TH —b
where
CWslm(r) = szrB:ZR v m(r)(_? COSO g + Wein SinaR)ei(—’szb,xRD+m)’RD/r) , (A.46)
s,
DWsk:n (r,z) - ei[(y Wakn COSQ g—msinct p/r)(z+bp)) . (A.47)
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APPENDIX B

VORTICITY WAVE MODAL AMPLITUDES

For the present version of SOURCE3D, we use a simplified two-dimensional/three-
dimensional approach to compute the axial velocity modal amplitudes for the vorticity waves.
This is done by placing *“very thin” sub-annuli at each radius r of the duct (Fig. B.1a) and applying
a two-dimensional Smith formula (Refs. 3 and 6) to the stator or rotor in each sub-annulus
modeled as a two-dimensional cascade. This gives us the axial velocity at each r across the duct.
We match these values radially, on an (s, k)-mode-by-mode basis, to values given by the three-
dimensional expression for the vorticity wave axial velocity, which, at this point, has unknown
modal coefficients. By doing this, we obtain an equation involving a Fourier series of the radial
vorticity modal functions U,(r) from Chapter 2. This equation can be inverted to give the
unknown modal coefficients, which are the vorticity modal amplitudes we set out to determine.
In the course of this process we discretize the equations by dividing the annular duct into L sub-
annuli (Fig. B.1b); each sub-annulus has radius r; and thickness An=(p—-n_), I=1,---, L.

The Smith formula approximations are calculated in each of these sub-annuli.

The two-dimensional axial velocity u(x,f) associated with a vorticity wave at a single
frequency @ for a two-dimensional cascade (Fig. B.2) can be deduced from S. N. Smith’s report
(Ref. 6) tobe

¢
T < . .
u(x, 1) =J‘ (fo) 2 u3ez(a3x+By+mt)e z(a3oos9+Bsm9)z0dzo (B.1)
0 k=00

for the stator in the stator-fixed coordinate system. The notation is that of Ref. 3, where ¢ is
blade chord length; I", vortex strength representing loading; zo, vane chord coordinate; s, vane
spacing; 3, a function given by Smith; o, axial wavenumber; [, transverse wavenumber; ©,

angular frequency; and © is stagger angle. The reader is referred to Ref. 3 for further details.
For a sub-annulus of fixed radius r, treated as a two-dimensional cascade, Eq. (B.1) can be
rewritten in our notation with all the harmonics of blade passing frequency as

u(®,f) = 2 2 i, (r)ei(ms"’ngfl-:BQl) , (B.2)

k=—co0 gm—cn

where
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(A) DUCT WITH SUB-ANNULUS AT RADIUS =

(B) SUBDIVIDED ANNULAR DUCT

FIGURE B.1 GEOMETRY FOR SUBDIVIDED ANNULAR DUCT
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The coordinate system is that shown in the “unrolled” geometry of Fig. B.3, with X specified by
the cylindrical polar coordinates (r,0,%;). The axes are attached to the stator at the leading edge
at each radius = r location. As before, m = sB - kV. Also, ¥ gn =(mQ,—sBQ)/Ug, by

virtue of Eq. (2.8); other variables have been defined previously. As mentioned in Appendix A,
w; and f, will have additional subscripts, k; and n;, for the case in Chapter 3, where the input is
standard waves.

The three-dimensional axial velocity, u(x, #), will have the same form as given in Chapter 2
for standard vorticity type waves. We write it as

u(x,t) =a, i i i(u_;"!‘.)yn (r)ei(m‘)-'y,b,xl—sBm) B.4)

k=—c0 §=—o0 n=1

in the stator-fixed coordinate system. Here, x = (r, ¢, x;), where x; has its origin at the
leading edge of the stator at the hub (see Fig. B.3), which is where output waves originate for
stator results in this section. The coefficients (uan/m) are the modal amplitudes we wish to
determine. The inclusion of m in these coefficients is required to eliminate division by O when
m = 0 in some of the formulas below. Subscripts W, which are equal to 3 for this case, have
been omitted, but are implied. They will be added later.

We rewrite Eq. (B.4) in terms of the coordinates for X, by applying the tranformation,

X1 = El —Xsp > (BS)
0=3-22, B.6)

to Eq. (B.4). These relations were obtained using Fig. B.3. Eq. (B.4) then gives

k=—c0 sz=—oo \n=1 m

u(x,t) = i i {i (b@.)ei(‘msblrﬂdmxsb)(]n (r)}ei(m$"Y;lmix—sBQJ) ) (B.7)
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To determine the coefficients (u./m), we require the values of u specified by Eqgs. (B.2)
and (B.7) to match at each radius r. Because the exponential terms in these relations are the
same, this means we must have

TRGEDY (%]e‘(‘”SD”””‘SD)Un<r) (B.8)
n=1

or, alternatively, that

isk (r)ei("fysu/r—’hb.xsp) = i (“skn )Un (r)
m

n=1
_ i (uslm ) c OS[("—I)ﬁ(’-VH):I’
n=1 m 'D~'H

because the exponential in Eq. (B.8) is independent of n. The right-hand side is a Fourier series
with coefficients (u,, / m), so that, in essence, the two-dimensional r-dependent tranverse

velocities have been resolved into radial modes.

(B.9)

Eq. (B.9) can be inverted and rearranged to give

49 .
(“s’m ) -2 | T (r)e™ sty (rydr (B.10)
m p—Ip g

In practice, i (r) is evaluated only atthe radii r, /=1,---, L, shownin Fig. B1b. Hence Eq.
(B.10) must be rewritten in discrete form. It becomes

2 & ;
(uﬂm): >, ()RR, (7)An, (B.11)
m rD—rD =1

where Ap=n-n_,.

Finally, by recalling Eq. (B.3) and including W’s, the above can be written more
conveniently in the form

L b
(—“Ws’m] =Y {cwm(rows(r,) J fs(fz:Z)Dst;('z,Z)dZ}Arz, (B.12)

m I=1 -b
where
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VUs Un(n) Urs & "sD/ MY Wete%sD)
mp-rg)n Us |(sBan\? ., (sBoy
+m* -2 msinas

Cwsin () =—

UrS UrS

Dyyn (11,2) = ¢'1(Y Weien COSCL5 —msine. s /1 )z +5)]

Because output waves in this section are vorticity waves, W= 3.

The modal amplitudes for the rotor are determined by a similar process.

(B.13)

(B.14)

We make

changes in Eq. (B.1) similar to those in going from stator to rotor in Ref. 3. We also change from
wi(r) and fi(r;, z) to w(r) and fi(r;, z), much as in Appendix A. In Chapter 3, subscripts s;
and n; have been added to w; and fi, specifying the modal indices, because the input is from
standard waves. Proceeding in parallel fashion to the stator case, we find that wu(x, ) is still
given by Eq. (B.4), only now x; has its origin where the leading edge of the rotor, rather than of
the stator, meets the hub, so that output waves originate from this location. Further, Egs. (B.12)-

(B.14) are replaced by the relations

m

L be
(___“stz)= Crrstn W) | £(1,2) Dgen 1,2z 1
1=

1 —bp
&
Crveion (71) = — BUp Un(n) YR _ o (MRD/N Y Wein*RD)
s - >
mp=re)n Um |(wvan V¥ , (wvag)
U +m- - —U'—' mSmuR
rR rR
and

DW o (rl )= ei[('y Wslor COSQL g—~msine g/ ) 2+bg)]
s * 2

so that Eq. (B.15) now gives the rotor modal amplitudes we desire.
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APPENDIX C

SCATTERING COEFFICIENTS FOR ACTUATOR DISKS

This section extends the two-dimensional actuator disk theory of Ref. 3 to three
dimensions. The extension here was first developed in private notes by D. B. Hanson and then
developed further by the present author. As discussed in Chapter 4, there are two actuator disks.
The first is at the leading edge of the rotor where it turns the mean axial flow to add swirl
between the rotor and stator. The second is at the trailing edge of the stator where it returns the
flow to the axial direction (see Fig. 4.1). The theory here applies to either of the two disks. The
configuration used is shown in Fig. C.1. For simplicity, the actuator disk is located axially at
x; = 0, which is where input and output waves also have their origins. The procedure for shifting
the input and output wave interfaces is discussed in Section 4.1. Region a in Fig. C.1 will refer to
the region on the upstream side of the actuator disk, region b to that on the downstream side.

We will derive scattering coefficients for the three types of wave interactions shown m
Fig. 4.2 and discussed in Section 4.1. To do this, we will use the jump conditions provided by
satisfying linearized mass, axial momentum, and transverse momentum CONSErvation requirements
across the disks. We do not include the effect of a radial component w. Radial equations are
easily derived but are not part of the current formulation. The technique used is to write the flow
variables as the sum of a mean part and a perturbation part (assumed to be small). Expressions
for the conserved quantities on each side of a disk are equated. Mean flow quantities are
determined and specified from a separate analysis. Jumps in the mean quantities at the disk
necessitate jumps in the perturbation quantities according to the analysis of this section. The
conservation requirements will be applied one (s, k)-mode at a time; harmonic indices s and k
(and therefore m) will be fixed across the disk, because scattering occurs only on radial indices n
and wave type. First, though, we will need formulas for all the acoustic wave and vorticity wave
unsteady velocity components in terms of state vector amplitudes.

Velocity Components
Acoustic pressure can be written in standard wave form (see Eq. 2.1) as

pg’(xl,r,(b,t):pm Z 2 2 A%sbz\pmn(r)e (mé—Y WXy —SBQ) , (C.1)

s§=—o0 f=—0o n=]1

where P will refer to either region a or b, and W will equal either 1 or 2. Superscript P is not
needed here for W ,,,(r), nor in the case later for U,(r), so it is omitted from these quantities.

We seek expressions for the associated axial and tranverse velocities I terms of the
parameters A%s,m. We write these velocities in the form
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o0 - -3 o0 R P
~sBQu
W 0= a0 S S Y uhn AR (1) T T SE), (C.2)

Ss==00 f=—c0 n=1

o0 o [- -] . P
—~sBQt
V0000 Y Y Y Vin Al g (r)e T Hr?1 5B (C.3)

S= =00 k:—oo n:l

and determine the unknown coefficients, u%s,m and v%s,m, through use of the momentum
equation

LU -Vu=-——Vp, (C.4)

where u = (u, v, w) is the perturbation velocity; U = (U, V, 0), the mean velocity; po, the
nominal fluid density; and p, the acoustic pressure.

Eq. (C.4) can be written as

ou 0 0 1
—t+U—+Q, —)u=-—Vp, C.S5
at(ax1 ‘q)) pop (C.5)
if we recall that ai = —la—i- The (-)-sign in the preceding relation is a result of the fact that
2%) r

x; and ¢ are positive in opposite directions (Fig. 2.3). We have also used V=-Qpr
Eq. (C.5) gives the axial momentum equation

ou du ou 1 op
LN L 2 C.6
ot Uam 30 poox (C6)

and the transverse momentum equation

Qv—+Ua—v+Q o 11 (o))

ot dx; 90 porod

If we substitute Egs. (C.1) and (C.2) into Eq. (C.6) on 2 mode-by-mode basis, while
replacing U and p, with Up and pp, we find that

P
P P Y Wskn
Uwsin = -3 (Cg)
T a,pp My
where
Moo = —SBQ=UpY Fpr +mQ. (C.9)
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Similarly, using Eqs. (C.1) and (C.3) in Eq. (C.7), we see that

oo m
Vhn =~ — . (C.10)
Thus we have

. P _ .
uby (xy,r.0.0) = p.. z Z 2 YZ"‘" AL o (1) Y Wtk ~ B (C.11)
§=—~00 k=00 n=1 P Wskn

and

. P _
Ve (x1,7,0,8) = p.. 2 2 2 — AL (N T R BN (0 19y
s=—00 k=00 n=1 W.tkn

To obtain comparable results for vorticity waves, we write the axial velocity in standard
wave form [see Eq. (2.6)] as

oo oo ©0 . P
wy (e rb.0=a, Y, Y Y, mAbU,(r)e’ ™Y et =B, (C.13)

S$==—c0 k=—co n=]
where W now is 3.

We seek an expression for the transverse velocity in terms of the state vector coefficients
Av};;s,m . To do this, we write the transverse velocity as

o0 o0 . P
Vi r0.0=8, Y, Y, Y VARl ()’ T T =B (C.14)

s=—oo k=—con=1
and find vi,, through use of the continuity equation
Vu=0, (C.15)
which must be satisfied by vorticity wave velocity components. This gives

ox; ro¢’

since the radial component for this wave type is zero. Substituting Egs. (C.13) and (C.14) mode-
by-mode into Eq. (C.16), we then have
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Vi = Y el - (C.17)

Thus we can rewrite Eq. (C.14) as

o o0 ©0 . P
VE (0. =00 3 Y S Py B AU (r)e 7Y b 75E00, (C.18)

=00 k=—oo n=1

Conservation of Mass
As shown in Ref. 14, the first-order equation for conservation of mass can be written as

a

U
pau +— 2 —pbub+ 2 pb’ (C19)
Ca Cp

where a and b are the same as before; the mean flow parameters p., p», Us Us, are considered
known; and items with tildas represent disturbance, i.e. fluctuating components. Eq. (C.19) is
applied at the interface between regions a and b, where x; =0.

Let us define

a.. -~ U, .
C,=—=(pgl, +—§pa) . (C.20)

had a

U,
(0% == (pyis, 7 Pb) (C.21)

oo

where 2= is used for non-dimensionalization. Substituting values for p, and i, using Egs.
P
(C.1), (C.11), and (C.13), we have
Z Alaskn'w mr (r)+

= Qoo poe
[ Pa 2, .
lskn a n'=1

o0 ! M S 3
Pa 2 P Y2slm Afsbf‘lf ot (P)+ 2. 2 Azas’m.\p' o (T)+ P 4. 2 mAfsb,' U, (Ml
sk €@ nal n=l
(C.22)

for each fixed set of indices (s, k). The radial index n’ is used here to differentiate between this
index and a second radial index n, which will be introduced later.* The factor ¢ (mé—sBQ) , which
is part of the disturbance components, is omitted from Eq. (C.22), but implied.

* Note that, in the code, we have used the notation »; rather than n'.
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We approximate C,, using finite sums, and write it more compactly as

T N, Ny
Ca=, ClarV o DAt + Y Cooii¥ oy (N Ay + Y, Chpn Uy (DAL, (C.23)
n=1 n'=1 n'=1

where, after simplification, we have

Clw =271 , (C24)
1skn’ Ca
a
Ch =22t Gy (C.25)
2skn’' Cq
Clor = aZ,p_am
S
(C.26)
In going from the first to the second line in Eq. (C.26), we have used the relationship
p=14p/c? (C.27)

for isentropic flow of air. There exist relations analogous to Egs. (C.23)-(C.26) for G, Elﬁ,m- ,
Chotor » a0 Cipr -

From a practical standpoint, we cannot satisfy Eq. (C.19) at all r, so instead we satisfy it in

a Galerkin sense. We set C, = G, multiply by —l-—w - (r)r, and integrate over dr from rg
81n
to rp, where

D
1n= | Wha(r)rdr . (C.28)
4:
We do this foreachn, n =1, - - -, N}, to obtain the set of equations,
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N, N, N;
b b b b
Z Cfslmn'Alaslm' - 2 Qslmn' A2s}'m' - 2 C3slmn’A3sbz'
=] =]

n=1
Ny . b N, N,
= 2 Clsbm'Alskn' - 2 C)‘.Islmn'AZaslm' - 2 Cis‘aslmn'AS"zsbz' ’ (C.29)
n'=l n'=1 n'=1
n= 1,' ‘Y Nl‘

In writing this expression, we have placed the input A’s, as shown in Fig. 4.2, on the right and the
output ones on the left The parameter g;, in Eq. (C.28), and subsequent g’s, will normalize
diagonal elements to 1 in matrices that will be defined later. In Eq. (C.29),

Chinn = 8 Clotot (C.30)
Choton =St Coston » (C.31)
Chtnnt =81 Coopor (C.32)

for P = aorb. Further, 3,, is the Kronecker delta (1 when n = n', 0 otherwise), and

p
1
Sipm == | Up (W mn(rrdr. (C.33)
81in rg
Eq. (C.29) will be used later when we set up an overall matrix equation.

Conservation of Axial Momentum
The first-order unsteady axial momentum equation at the actuator disk is given by

1+ M2)P, +2p JUalt, = 1+ M7) By +2p, Uyl (C.34)
(see Ref. 14). Thus we require that
F, = F, (C.35)
where

1 - ~
Fa =— 1+ Mg )pa + 2p aUaua]’ (C.36)

oo

and F; is the same, only with b’s in place of a’s. The factor 1/p.. is used for normalization.
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Substituting standard wave expressions into F, and F;,, truncating the sums as in

o 1 .
Eq. (C.23), multiplying Eq. (C.35) by — W ,,,,(r)r foreach n=1,--., N;, and proceeding
81n
similarly to the conservation of mass case, we obtain the set of equations,

N, N, Y b Ny Y
a a
2 Fisbm'Alslm' - 2 Fésknn’ A2skn' - 2 Fél.]slmn'A3slm'

n=1 n'=1 n'=1
N , b N, N3
=Y Fln Al = 2, Bstnn A — 2 Fston Ao » (C37)

n'=1 n'=1 n'=1

n =1,. ’N2

This is the second set of equations needed for the final matrix equation. In Eq. (C.37),

P .

Flm =8 [+ M3)+2cpMp 7};""" 1, (C.38)
A'lslm’
P 2 Y P ,

Bygnn =8 [(1+ M) +2cpMp-52], (C.39)
)"Zslm'

Enn =81np [2<1.4>Mp["—”)(j+'°)m] (C.40)

oo P

forP = a or b.
Conservation of Transverse Momentum
The first-order unsteady transverse momentumn equation is derived by retaining only the
first-order terms from Eq. (D-23) of Ref. 14. Itis given by
p aUa;a + paVaEa + ﬁaUaVa = prbgb + prbizb + 5bUbe . (C.41)

Since p = pc?, Vi = Qur, and Vi = Qgr, where Q,, and Q, are swirl angular velocities in
regions a and b, this can be written as

- - Q.r\_ - - Q.rl.
anava + pagsama + Ma( - )pa = prbvb + prsbmb +Mb( ‘:b )Pb . (C-42)
a b
Let us set
1 - - Q. ri.
G, = ;—l:p aUaVa + P oQsort, + Ma(’%)ﬂajl (C.43)
oo a
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and define G, analogously. Then Eq. (C.42) is satisfied when

Ga = Gb.

(C.44)

We proceed as previously, substituting standard wave expressions in Eq. (C.44), truncating the

(C.45)

sums, multiplying by U,(r) foreachn, n=1,---,N; and integrating over dr from rg to
82n”
rp, where
)]
g2n= | U2(rdr.
"
We obtain the result

N N, N;
b b b b
Y, Gt Al — Y. Gt Arsien — Y Gl Azt

n=1 n'=1 n'=1
N 5 b N, N3
_ a a a a
= Gt Alsin = Y, G Assin = Z G35t A st »
n=1 n'=1 n'=1
n=1,-Ns,
where
P
P _ Mp Y iskn
Gistnn = —Oonmmcp—p —+03, nMepcp o
1skr 1k
P
P _ Mp Y 25k
Gasinn = —O2nnmep o +83y, n Mspcp Y
2skn’ 2skn'

P 2. P a,
Gigorn =B n,n [1'4&—MP73.:M +14£2 2= sP)
P Cp P Cp

for P = g or b, and
121
Bonn =—— | ZWmn (MU,

2n g

1%
Ssnp =~ | Wmn (U,()dr .

2n g
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InAthe above, My = Qprp/cp, the swirl Mach number at the outer duct radius.
Matrix Equation

Let C7 be the matrix consisting of all elements C{y,, for all allowable s, k, n, and 7.
Let Cb, c2, ct, c2, ¢t, Ff, F}, F§, F}, F§, F!, G¢, G}, G3, G, G3,
and Gg be defined analogously. Then Eqgs. (C.29), (C.37), and (C.46) can be combined and

written in matrix form as

KoutAout =KinAin (C.52)
where
b
ci -G —C;
Ku=|F -F -F|, (C.53)
b b
G -G; -G
¢ - ¢
K.=\Ff -F -F;|, (C.54)

A, =<AL}, (C.55)

A ={AS}. (C.56)

The vectors A, and A; consist, respectively, of output and input state vectors of type Agx;
the vectors A{; have been defined earlier in Section 2.2.

Eg. (C.52) can be solved to give

= Kio Ain,
where
K, =K. K, . (C.58)
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Clearly the elements of K;, give the ratios of the output to the input state vector coefficients. By
the definition of scattering coefficients, this means that K, is the scattering matrix for the
actuator disk. This result is for input and output waves originating at the actuator disk. After
these locations are shifted axially, in Section 4.1, we obtain the final matrix.
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APPENDIX D

COMBINING STATOR OR ROTOR WITH AN ACTUATOR DISK

The source vector coefficients and scattering coefficients for the stator alone and
scattering coefficients for the actuator disk have been derived separately for the configurations

shown m Fig. D.1a. In this figure, each A;’;f represents the vector made up of all components

Ag,,,m of type W at interface P over all allowable values of the indices s, k, n. The quantities Bvl;;

are defined analogously for source vectors. See Section 2.2 for a more detailed description of
these vectors. In this appendix, we derive the scattering coefficients and source vector
coefficients for the combined stator/actuator disk element shown in Fig. D.1b. Afterwards we
will discuss a combined element for the rotor. Note that the indices for the interface locations in
Fig. D.1 are kept general, ie. a, b, and ¢, so that similar notation can be used later for the
rotor/actuator disk situation. Then rotor results will be analogous to stator results. Referring to
Fig. 3.1, we see that for the stator/actuator disk case, x* = x°, x* = x°, and x* = x°. The

analysis here was developed jointly with D. Hanson.

Referring to Fig. D.1a, we can write for the stator

Af =S75A; +S55AS +STEAL + BE, (D.1)
AL =S55A% +5524% + 5554 + B, D.2)
A3 = S33A3 + 53545 + S5, A} + BY, (D.3)

where we have equated standard waves on the left with their component parts on the right.
Exponential and other factors, that would be present in the standard wave representations, are

omitted because they cancel from both sides. In the above, the quantities S%i, defined in
Section 2.2, denote the scattering matrices made up of all the scattering coefficient elements
S% sknskn, 1O the stator alone whose indices fall in the range of values allowed. The Ag ’s

on the left of the equations are for output waves; those on the right are for input ones.

For the actuator disk, we have similarly

Al =SPEAb +sPh Al +skaAS, (D.4)
A3 = S3;A3 + 55343 + S5 45, (D.5)
A5 =S5AL +SHAL +SEAS, D.6)
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< A
A «—
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B2 <—
' —> B
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(B) STATOR AND ACTUATOR DISK AS ONE ELEMENT

FIGURE D.1 COMBINING THE STATOR ALONE AND ACTUATOR DISK INTO ONE ELEMENT
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where the scattering coefficient elements S{;& skmiskn, 1D the scattering matrices S%i above are
those for the actuator disk. Again, the AVI} ’s on the left are for output waves, those on the right

for input ones.

Egs. (D.1)-(D.6) can be written in block matrix form as

Aa Saa Sdb . Aa Ba
Ab = Saa Sbb Sbc Ab + Bb : (D.7)
Ac . Scb SCC AC Bc
out in
where
A7 Bf S5 St S5
AP =:all, BP={BF|, s®=|. . .| s®-= ,
A3 Bf
bb b
- : S12 Si3 11
sba=|. sbs sbel  sPhoisE . .| gheol . L. D.8)
S5 S5 S5
St=| S% SEL  s<=|S%
S5 S5 S5

In the matrices above, the dots denote zero matrices. The notations { }; and { }ou @I
Eq. (D.7) designate, respectively, input and output waves.

Eg. (D.7) can be rewritten in the alternate matrix form as

Al =S™AL +5%04F +B°, (D.9)
Al =SP°A% +SPPAL st Al 4+ B, (D.10)
A, = StAL +S°AS + B¢, D.11)

where we have changed the AF’s from Eq. D.7) to A;,’s and Afm ’s to indicate whether
they came, respectively, from the input or the output vectors there.
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To obtain the scattering matrix and source vector for the combined element case of
Fig. D.1b, we must eliminate the Aj’s and A,,’s from Egs. (D.9)-(D.11). To do this, note

that, for the combined element, the output waves in Fig. D.1a in the region between the stator and
the actuator disk must be the same as the input waves going into the actuator disk there.
Similarly, the output waves traveling from the actuator disk to the stator must be the same as the

input waves entering the stator there. Hence, we require A,-l;, = Af,’u,. Let us set
A = A2 =AY, then Eq. (D.10) gives that

(1-SP2)AY =$P A2 + ST AS + B, (D.12)
SO

AP = ES*@A? + ES™A{ + EB®, (D.13)

where
E=(1-5"%)"1. (D.14)

Using Eq. (D.13) in Egs. (D.9) and (D.11), then

A%, = (5% + S ES"™)AZ + S® ES™ AL, + S®EB® + B*, (D.15)
A, =SPES™ A2 + (S + SPES™)AL, + STEB® + B . (D.16)

Hence,

A _ [S% +S?ESP]  [SEsb] |[a° N (B* + S EB?) D7)
A . [S?ES*]  [s*+SPEs*™))|\a°), |{B°+S?EB"}]

Taking the two state vectors above as Ao and Ai, and setting

S _|rs*+ s®gsta]  [SPESH) D18)
_[(B* +s**EB?)
Bcomp = {{B‘ +SPEB"Y [’ D.19)
we have, finally,
Ao = ScomBAin + Bcoms - (D.20)

When Bcomp = 0, we see that the elements of Scoup provide the ratios of the output to the
input state vector coefficients. Therefore, by the definition of scattering coefficients, Scoms is the
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scattering matrix for the combined element. Also, clearly, Bcous is the source vector for the
combined element.

The derivation for the rotor case is similar. In place of Fig. D.1, we now use Fig. D.2 to
obtain the equations

A] =Si3A5 +SHAS +52AL, (D.21)
A =SJ3A5 +S35A5 + ST AL, (D.22)
Aj = SZAS +83545 + 53747, D.23)
A =S AL+ sBh Al 1 sbe Al (D.24)
AS=5545 +5%AL +52A¢, (D.25)
A5 =S5AL +5Ab +55AS. (D.26)

These equations have the same form as Egs. (D.1)-(D.6) have for the stator case, only source
vector terms are no longer present and x° = x/, x* = ¥, and x° = x’. This change in x°, x*,
and x° means that rotor alone coefficients replace the actuator disk coefficients in Eqs. (D.1)-
(D.6), and actuator disk coefficients replace the stator alone ones.

Proceeding from this point on, exactly as before, we now obtain
Agur = ScompAin (D.27)

m place of Eq. (D.20), where Scous is given by Eq. (D.18). We see, again, that the elements of
Scome provide the ratios of the output to the input state vector coefficients. Hence, Scouz is the
scattering matrix for the combined element. The quantities 5%, $%, $*°, $*, $%, §¢ and Ein
Eq. (D.18) are, again, specified by Eqgs. (D.8) and (D.14), only now the change in x°, x°, and x°
gives elements that are different from those for the stator case.
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